– Science Adv. 10(28) 10.1126/sciadv.ado1453 (2024).
Targeting a microbiota Wolbachian aminoacyl-tRNA synthetase to block its pathogenic host.– 10(1):12. 10.1038/s41421-023-00644-x (2024).
Cytoskeleton remodeling induced by SMYD2 methyltransferase drives breast cancer metastasis.– Structural basis of homodimerization of the JNK scaffold protein JIP2 and its heterodimerization with JIP1. Structure. S0969-2126(24)00228-4. 10.1016/j.str.2024.06.010 (2024).
– Int J Biol Macromol. 274(1):133233, 10.1016 (2024).
Phage display identification of high-affinity ligands for human TSG101-UEV: A structural and thermodynamic study of PTAP recognition.– Hoffmann, G., Le Gorrec, M., Mestdach, E., Cusack, S., Salmon, L., *Jensen, MR., *Palencia, A. Adenosine-Dependent Activation Mechanism of Prodrugs Targeting an Aminoacyl-tRNA Synthetase. Journal of the American Chemical Society. 10.1021/jacs.2c04808 (2023).
– Mariño Perez, L., Ielasi, FS., Bessa, LM., Maurin, D., Kragelj, J., Blackledge, M., Salvi, N., Bouvignies, G., *Palencia, A., *Jensen, MR. Visualizing protein breathing motions associated with aromatic ring flipping. Nature. 602, 695-700 (2022).
– Goutam, K., Ielasi, FS., Pardon, E., Steyaert, J., Reyes N. Structural basis of sodium-dependent bile salt uptake into the liver. Nature. 606, 1015-1020 (2022).
– Ielasi, FS., Ternifi, S., Fontaine, E., Iuso, D., Couté, Y. & *A. Palencia. Human Histone pre-mRNA Assembles Histone- or Canonical-mRNA Processing Complexes by Overlapping 3’-End Sequence Elements. Nucleic Acids Research. Nov 30;gkac878 (2022).
– Spittler, D., Indorato, RL., Boeri-Erba, E., Delaforge, E., Signor, L., Harris, SJ., Garcia-Saez, I., Palencia, A., Gabel, F., Blackledge, M., Noirclerc-Savoye, M. & Petosa, C. Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex. Life Sci Alliance. 5(10):e202201431 (2022).
– Kragelj, J., Orand, T., Delaforge, E., Tengo, L., Blackledge, M., Palencia, A. & Jensen, MR.(2021) 11, 1204. Enthalpy–entropy compensation in the promiscuous interaction of an intrinsically disordered protein with homologous protein partners. Biomolecules. 3;11(8):1204. 10.3390/biom11081204 (2021).
– Lukarska, M. & *Palencia, A. Aminoacyl-tRNA synthetases as drug targets. The Enzymes, Elsevier. 48:321-350. 10.1016/bs.enz.2020.07.001 (2020).
– Proceedings of the National Academy of Sciences of U S A. 117(34):20576-20585 (2020).
– Nucleic Acids Research 48(9):4946-4959 (2020).
Molecular basis of the multifaceted functions of human leucyl-tRNA synthetase in protein synthesis and beyond.– Swale, C., Bougdour, A., Gnahoui-David, A., Tottey, J., Georgeault, S., *Laurent, F., *†Palencia, A., *†Hakimi, M.A. Metal-captured inhibition of pre-mRNA processing activity by CPSF3 controls Cryptosporidium infection. Science Trans. Medicine 6;11(517). doi: 10.1126(2019). †Lead Authors.
– Iglesias-Bexiga, M., Palencia, A., Corbi-Verge, C., Martin-Malpartida, P., Blanco, FJ., Macias, MJ., Cobos, ES. & Luque, I. Binding site plasticity in viral PPxY Late domain recognition by the third WW domain of human NEDD4. Scientific Reports 9(1):15076 (2019).
– Delaforge, E., Kragelj, J., Tengo, L., Palencia, A., Milles, S., Bouvignies, G., Salvi, N., Blackledge, M. & Jensen, MR. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. Journal of the American Chemical Society 140(3):1148-1158 (2018).
– Dulic, M., Cvetesic, N., Zivkovic, I., Palencia, A., Cusack, S., Bertosa, B. & Gruic-Sovulj, I. Kinetic origin of substrate specificity in post-transfer editing by leucyl-tRNA synthetase. Journal of Mol. Biol. 17:30517 (2018).
– *Palencia, A., *Bougdour, A., Brenier-Pinchart, MP., Touquet, B., Bertini, RL., Sensi, C., Gay, G., Vollaire, J., Josserand, V., Easom, E., et al. Targeting Toxoplasma gondii CPSF3 as a new approach to control toxoplasmosis. EMBO Molecular Medicine 9: 385-394 (2017).
– Sindikubwabo, F., Ding, S., Hussain, T., Ortet, P., Barakat, M., Baumgarten, S., Cannella, D., Palencia, A., Bougdour, A., Belmudes, L., Couté Y., et al. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. Elife 6:29391 (2017).
– Pellegrini, E., Palencia, A., Braun, L., Kapp, U., Bougdour, A., Belrhali, H., Bowler, MW. et al. Structural basis for the subversion of MAP kinase signalling by an intrinsically disordered parasite secreted agonist. Structure 25 (1): 16-26 (2017).
– Palencia, A.†, Chopra, S.†, Virus, C., Schulwitz, S., Temple, BR., Cusack, S. & Reader, J.Structural characterisation of antibiotic self-immunity tRNA synthetase in plant tumour biocontrol agent. Nature comm 7:12928 (2016).
– *Palencia, A., Liu, RJ., Lukarska, M., Gut, J., Bougdour, A., Touquet, B., Wang, ED., Li, XF., Alley, MR., Freund, YR., Rosenthal, PJ., Hakimi, MA & Cusack, S. Cryptosporidium and Toxoplasma parasites are inhibited by a benzoxaborole targeting leucyl-tRNA synthetase. Antimicrobial agents and chemotherapy 60(10):5817-27 (2016).
– Palencia, A., Li, X., Bu, W., Ding, C., Easom, E., Feng, L., Hernandez, V., Houston, P., Liu, L., Meewan et al. Discovery of novel oral protein synthesis inhibitors of Mycobacterium tuberculosis that target leucyl-tRNA synthetase. Antimicrobial agents and chemotherapy 60(10):6271-80 (2016).
– Sonoiki, E., Palencia, A., Guo, D., Ahyong, V., Dong, C., Li, X., Hernandez, V., Zhang, YK., Choi, W., Gut, J., Legac, J., Cooper, R., Alley, MRK., et al. Anti-malarial benzoxaboroles target P. falciparum leucyl-tRNA synthetase. Antimicrobial agents and chemotherapy 60(8):4886-95 (2016).
– Aleksandrov, A., Palencia, A., Cusack, S. & Field M. Aminoacetylation reaction catalyzed by leucyl-tRNA synthetase operates via a self-assisted mechanism using a conserved residue and the aminoacyl substrate. J. Phys Chem B 120(19):4388-98 (2016).
– Kragelj, J., Palencia, A., Nanao, MH., Maurin, D., Bouvignies, G., Blackledge, M. & Jensen, MR.Structure and dynamics of the MKK7-JNK signalling complex. Proceedings of the National Academy of Sciences of the United States of America 112(11):3409-14 (2015).
– Zhao, H., Palencia, A., Seiradake, E., Ghaemi, Z., Cusack, S., Luthey-Schulten, Z. & Martinis, S. Analysis of the Resistance Mechanism of a Benzoxaborole Inhibitor Reveals Insight into the Leucyl-tRNA Synthetase Editing Mechanism. ACS Chem Biol. 10 2277-85 (2015).
– Schild, F., Kieffer-Jaquinod, S., Palencia, A., Cobessi, D., et al. Biochemical and biophysical characterization of the Selenium binding and reducing site in Arabidopsisthaliana homologue to mammals Selenium Binding Protein 1. Journal of Biological Chemistry 46:31765-76 (2014).
– Cvetesic, N., Palencia, A., Halasz, I., Cusack,S. & Gruic-Sovulj, I. The physiological target for LeuRS translational quality control is norvaline. EMBO J. 33(15):1639-53 (2014).
– Borel, F., Hachi, I., Palencia, A., Gaillard, MC. & Ferrer, JL. Structure of mouse Mu-crystallin complexed with NADPH and the T3 thyroid hormone. FEBS Journal 281(6),1598-612 (2014).
– Li, L., Palencia, A., Lukk, T., Li, Z., et al. Leucyl-tRNA synthetase editing domain functions as a molecular rheostat to control codon ambiguity in Mycoplasma pathogens. Proceedings of the National Academy of Sciences of the United States of America 110, 3817-22 (2013).
– Palencia, A.†, Chopra, S.†, Virus, C., Tripathy, A., Temple, BR., Velazquez-Campoy, A., Cusack, S., et al. Plant tumour biocontrol agent employs a tRNA-dependent mechanism to inhibit leucyl-tRNA synthetase. Nature comm 4, 1417 (2013).
– Hernandez, V., Crépin, T., Palencia, A., Cusack, S., et al. Discovery of a novel class of boron-based antibacterials with activity against gram-negative bacteria. Antimicrobial agents and chemotherapy 57, 1394-403 (2013); and Research highlight in Nature 494, 151 (2013).
– Benoit, MP., Imbert, L., Palencia, A., Perard, J., Ebel, C., Boisbouvier, J. & Plevin, MJ. The RNA-binding region of human TRBP interacts with microRNA precursors through two independent domains. Nucleic Acids Research 41, 4241-52 (2013).
– Palencia, A., Crepin, T., Vu, MT., Lincecum, TL., Martinis, SA. & Cusack, S. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Nature structural & molecular biology 19, 677-84 (2012).
– Xiol, J. Cora E., Koglgrubel, R., Chuma, S., Subramanian, S., Hosakawa, M., Reuter, M., Yang, Z., Berninger, P., Palencia, A., Venes, V., et al. A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing. Molecular cell 47, 970-9 (2012).
– Mathioudakis, N., Palencia, A., Kadlec, J., Round, A., Tripsianes, K., Satler, M., Pillai, RS., & Cusack, S. The multiple Tudor domain-containing protein TDRD1 is a molecular scaffold for mouse Piwi proteins and piRNA biogenesis factors. RNA 18, 2056-72 (2012).
– Crépin, T., Dias, A., Palencia, A., Swale, C., Cusack, S. & Ruigrok RW. Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. Journal of virology 84, 9096-104 (2010).
– Palencia, A., Camara-Artigas, A., Pisabarro, MT., Martinez, JC. & Luque, I. Role of interfacial water molecules in proline-rich ligand recognition by the Src homology 3 domain of Abl. Journal of Biological Chemistry 285, 2823-33 (2010).
– Camara-Artigas, A., Palencia, A., Martinez, JC., et al. Crystallization by capillary counter-diffusion and structure determination of the N114A mutant of the SH3 domain of Abl tyrosine kinase complexed with a high-affinity peptide ligand. Acta Cryst. Section D, Biological Crystallography 63, 646-52 (2007).
– Palencia, A., Martinez, JC., Mateo, PL., Luque, I. & Camara-Artigas, A. Structure of human TSG101 UEV domain. Acta Cryst. Section D, Biological Crystallography 62, 458-64 (2006).
– Palencia, A., Cobos, ES., Mateo, PL., Martinez, JC. & Luque, I. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Journal of molecular biology 336, 527-37 (2004).
Contact: andres.palencia [ at] univ-grenoble-alpes.fr